트랜스포머3 [Deep Learning] DETR 모델 이해하고 실습하기 (3) 안녕하세요!!지난 포스팅까지 DETR 모델을 활용해서 이미지 상 객체의 클래스와 바운딩 박스를 예측해보았는데요오늘은 예측 과정에서 모델이 이미지의 어떤 부분에 집중(attention)을 했는지, attention weights를 시각화해보는 실습을 해보겠습니다. 이전 게시글을 참고해주세요https://jun-eon.tistory.com/entry/Deep-Learning-DETR-%EB%AA%A8%EB%8D%B8-%EC%9D%B4%ED%95%B4%ED%95%98%EA%B3%A0-%EC%8B%A4%EC%8A%B5%ED%95%98%EA%B8%B0-1 [Deep Learning] DETR 모델 이해하고 실습하기 (2)안녕하세요!지난 실습에서는 pytorch로 DETR 모델을 구현해보았습니다. 이번에는 이 모델.. 2024. 11. 15. [Deep Learning] DETR 모델 이해하고 실습하기 (1) 오늘은 객체 탐지를 위해 Transformer를 활용하는 모델인 DETR (End-to-End Object Detection with Transformers, DEtection TRansformer)모델을 알아보고 실습해보려고 합니다. DETR은 기존에 자연어처리 분야에서 많이 쓰이던 Transformer가 객체 탐지에도 활용될 수 있다는 가능성을 열어준 모델로, self-attention을 통해 이미지 내 객체 간 관계를 효과적으로 학습하고, 복잡한 후처리 과정 없이 한 번에 객체 탐지와 분류를 수행할 수 있는 end-to-end 모델입니다. from torch import nnclass DETR(nn.Module): def __init__(self, num_classes, hidden_dim=2.. 2024. 11. 13. [LangChain] 1. LangChain에 대해서 (youtube 모두의AI 님의 영상을 보며 공부한 내용을 정리) 전체 학습 목표: LLM의 구동 원리를 이해하고, LangChain을 통해 실무 활용 가능한 챗봇 구축하기배경 지식LLM (Large Language Model)초거대 언어모델특징대규모 데이터 학습딥러닝 기술트랜스포머: 셀프 어텐션 메커니즘을 사용하여 문맥을 이해하고, 병렬 처리 능력이 뛰어나 대규모 데이터를 효과적으로 학습할 수 있음주로 트랜스포머(Transformer) 구조를 기반으로 구축Transformer“Attention is All You Need”특징병렬 처리순차적 계산에 의존하지 않기 때문에 병렬 처리가 가능하여 훈련 속도가 빠름기존 순환신경망(RNN) 및 LSTM(Long Short-Term Memory) 보다 효율적셀프 .. 2024. 7. 16. 이전 1 다음