- Propositional Logic 명제 논리
- Basic concepts of knowledge, logic, reasoning
- Propositional logic: syntax(구문) and semantics(의미론), Pacworld example
- Inference by model checking and theorem proving
- Agents that know things
- Agents는 지각, 학습, 언어를 통해 지식을 습득
- Knowledge of the effects of actions
- trainsition model
- Knowledge of how the world affects sensors
- sensor model
- Knowledge of the current state of the world
- Knowledge of the effects of actions
- Can keep track of a partially observable world
- Can formulate plans to achieve goals
- Agents는 지각, 학습, 언어를 통해 지식을 습득
- Knowledge
- Knowledge base = set of sentences in a formal language
- Declarative approach to building an agent (or other system)
- Tell it what it needs to know (or have it Learn the knowledge)
- then it can Ask itself what to do (answers should follow from the KB)
- Agents can be viewed at the knowledge level (what they know, regardeless of how implemented)
- 단일 추론 알고리즘으로 모든 답변 가능한 질문에 답할 수 있음
Logic
- Syntax
- What sentences are allowed?
- Semantics
- What are the possible worlds?
- Which sentences are true in which worlds?
- Different kinds of logic
- Propositional logic 명제 논리
- 연언기호와 부정기호 만을 사용하여 추론하는 논리학
- First-order logic
- Relational databases
- Propositional logic 명제 논리
Inference: Entailment
- Entailment
- a |= b
- ‘a entails(involves) b’, ‘b follows from a’
- a-worlds are a subset of the b-world
- a |= b
Inference: Proofs
- Proof
- a와 b 사이의 entailment를 증명하는 것
- Sound algorithm
- Everything it claims to prove is in fact entailed
- 증명한다고 주장하는 모든 것이 실제로 entail됨
- Complete algorithm
- Everything that is entailed can be proved
- entail되는 모든 것들을 증명할 수 있음
- Method
- Model-Checking
- 모든 가능한 세계에서, a가 참이면 b도 참이다
- Propositional logic 에서는 OK
- First-order logic 에서는 not easy
- Theorem-proving
- a에서 b로 이어지는 증명 단계(추론 규칙의 적용)의 탐색
- Model-Checking
Satisfiability and Entailment
- A sentence is satisfiable
- if it is true in at least one world
- Suppose we have a hyper-efficient SAT solver;
- how can we use it to test entailment
- So, add the negated conclusion to what you know,also known as reductio ad absurdum
- test for satisfiability;
- Effiecient SAT solvers operate on conjunctive normal form
Conjunctive Normal Form (CNF)
- Every sentence can be expressed as a conjunction of clauses
- Each clause is a disjunction of literals
- Each literal is a symbol or a negated symbol
- Conversion to CNF by a sequence of standard transformations
State estimation
- 주어진 관찰과 행동 이력을 바탕으로 현재 무엇이 참인지 추적하는 것
- A logical agent can just ask itself!
- ‘Lazy’
- it analyzes one’s whole life history at each step
Summary
- One possible agent architecture
- knowledge + inference
- 논리는 지식을 인코딩하는 공식적인 방법
- 논리: syntax(구문), set of possible worlds(가능한 세계 집합), truth condition(진리 조건)
- A simple KB for Pacman
- covers the inital state, sensor model, and transition model
- 논리적 추론은 문장 간의 entailment 관계를 계산하여 광범위한 작업을 수행
- DPLL 기반의 SAT solver는 매우 효율적인 추론을 제공
- Logical agents는 하나의 knowledge base에서 하나의 generic inference algorithm을 사용하여 localization, mapping, SLAM, planning (and many other things)을 수행한다.
'인공지능 > Artificial Intelligence (COSE361)' 카테고리의 다른 글
[인공지능] Chapter 7. Adversarial search (1) (1) | 2023.10.25 |
---|---|
[인공지능] Chapter 6. Constraint Satisfaction problems (2) | 2023.10.24 |
[인공지능] Chapter 4. Local Search (7) | 2023.10.24 |
[인공지능] Chapter 3. Informed Search (0) | 2023.10.24 |
[인공지능] Chapter 2. Search (0) | 2023.10.24 |