본문 바로가기
인공지능/Artificial Intelligence (COSE361)

[인공지능] Chapter 5. Propositional logic

by 이준언 2023. 10. 24.
  • Propositional Logic 명제 논리
    • Basic concepts of knowledge, logic, reasoning
    • Propositional logic: syntax(구문) and semantics(의미론), Pacworld example
    • Inference by model checking and theorem proving
  • Agents that know things
    • Agents는 지각, 학습, 언어를 통해 지식을 습득
      • Knowledge of the effects of actions
        • trainsition model
      • Knowledge of how the world affects sensors
        • sensor model
      • Knowledge of the current state of the world
    • Can keep track of a partially observable world
    • Can formulate plans to achieve goals
  • Knowledge
    • Knowledge base = set of sentences in a formal language
    • Declarative approach to building an agent (or other system)
      • Tell it what it needs to know (or have it Learn the knowledge)
      • then it can Ask itself what to do (answers should follow from the KB)
    • Agents can be viewed at the knowledge level (what they know, regardeless of how implemented)
    • 단일 추론 알고리즘으로 모든 답변 가능한 질문에 답할 수 있음

Logic

  • Syntax
    • What sentences are allowed?
  • Semantics
    • What are the possible worlds?
    • Which sentences are true in which worlds?
  • Different kinds of logic
    • Propositional logic 명제 논리
      • 연언기호와 부정기호 만을 사용하여 추론하는 논리학
    • First-order logic
    • Relational databases

Inference: Entailment

  • Entailment
    • a |= b
      • ‘a entails(involves) b’, ‘b follows from a’
      • a-worlds are a subset of the b-world

Inference: Proofs

  • Proof
    • a와 b 사이의 entailment를 증명하는 것
  • Sound algorithm
    • Everything it claims to prove is in fact entailed
    • 증명한다고 주장하는 모든 것이 실제로 entail됨
  • Complete algorithm
    • Everything that is entailed can be proved
    • entail되는 모든 것들을 증명할 수 있음
  • Method
    • Model-Checking
      • 모든 가능한 세계에서, a가 참이면 b도 참이다
      • Propositional logic 에서는 OK
      • First-order logic 에서는 not easy
    • Theorem-proving
      • a에서 b로 이어지는 증명 단계(추론 규칙의 적용)의 탐색

 

Satisfiability and Entailment

  • A sentence is satisfiable
  • if it is true in at least one world
  • Suppose we have a hyper-efficient SAT solver;
  • how can we use it to test entailment
  • So, add the negated conclusion to what you know,also known as reductio ad absurdum
  • test for satisfiability;
  • Effiecient SAT solvers operate on conjunctive normal form

Conjunctive Normal Form (CNF)

  • Every sentence can be expressed as a conjunction of clauses
  • Each clause is a disjunction of literals
  • Each literal is a symbol or a negated symbol
  • Conversion to CNF by a sequence of standard transformations

State estimation

  • 주어진 관찰과 행동 이력을 바탕으로 현재 무엇이 참인지 추적하는 것
  • A logical agent can just ask itself!
  • ‘Lazy’
    • it analyzes one’s whole life history at each step

Summary

  • One possible agent architecture
    • knowledge + inference
  • 논리는 지식을 인코딩하는 공식적인 방법
    • 논리: syntax(구문), set of possible worlds(가능한 세계 집합), truth condition(진리 조건)
  • A simple KB for Pacman
    • covers the inital state, sensor model, and transition model
  • 논리적 추론은 문장 간의 entailment 관계를 계산하여 광범위한 작업을 수행
  • DPLL 기반의 SAT solver는 매우 효율적인 추론을 제공
  • Logical agents는 하나의 knowledge base에서 하나의 generic inference algorithm을 사용하여 localization, mapping, SLAM, planning (and many other things)을 수행한다.